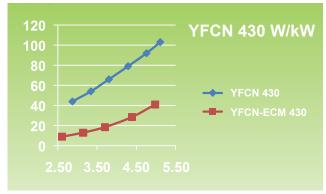
ЕСМ технология

Инверторный двигатель вентилятора

Эксплуатационные расходы. Энергопотребление. Срок службы.

Эти три проблемы становятся все более и более важными факторами при выборе модели фэнкойла. С учетом этих критериев компанией Johnson Controls была разработана серия фэнкойлов, в которых использована технология ЕСМ.

Технология ЕСМ включает в себя применение **бесщеточного электродвигателя**, который регулируется с помощью **специального электронного устройства** (инвертора). По сравнению с обычными установками, оборудованными асинхронными трехскоростными электродвигателями, фэнкойлы и кассетные доводчики с бесщеточными электродвигателями позволяют получить значительную экономию энергии, **снижая потребление электроэнергии до 70%.**

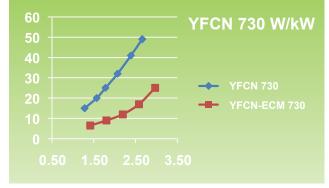

Расход воздуха **может плавно изменяться** с помощью сигнала 1-10 Вольт, генерируемого устройством управления JCI, или независимыми системами регулирования. Плавное регулирование расхода воздуха позволяет улучшить **акустические характеристики** и более точно реагировать на изменения тепловой нагрузки, гарантируя **стабильность поддержания температуры воздуха в помещении.**

Технология ЕСМ

В технологии ЕСМ используются бесщеточные синхронные электродвигатели с постоянными магнитами, которые управляются с помощью специальных регуляторов. Контроллер использует сигнал 0-10 Вольт постоянного тока, чтобы управлять частотой вращения вентилятора.

Бесщеточный электродвигатель состоит из ротора с постоянными магнитами, магнитные поля которого взаимодействуют с магнитными полями, производимыми обмотками статора. Передача тока осуществляется не с помощью механического коммутатора (скользящих контактов), а посредством электронной системы коммутации: один электронный контроллер (инвертор) запитывает статор двигателя и создает вращающиеся магнитные поля, что в свою очередь, определяет скорость вращения ротора. При работе бесщеточного двигателя образуется гораздо меньше тепла, чем при работе традиционных асинхронных двигателей. Кроме того, они имеют значительно меньшие механические потери, чем стандартные двигатели. Отсутствие щеток устраняет также основной источник электромагнитных помех.

Энергопотребление: Сравнение моделей YFCN с моделями YFCN-ECM (Вт/кВт)



Отличительные особенности

- Бесщеточный электродвигатель с частотным преобразователем (инвертором).
- Управляющий сигнал 0-10 Вольт постоянного тока.
- Низкие механические потери на трение.
- Плавное регулирование частоты вращения вентилятора.
- Специально разработано для электронного и цифрового регулирование, в частности для систем управления оборудованием здания BMS.
- Предусмотрена возможность вручную задавать три фиксированные скорости вращения вентилятора (Высокая / Средняя / Максимальная).
- Электродвигатели такого типа могут быть поставлены для фэнкойлов и кассетных доводчиков.

Преимущества (по сравнению с традиционными щеточными электродвигателями)

- Экономия электроэнергии: потребление электроэнергии сокращается на 70%.
- Более высокая эффективность: предусмотрена возможность регулирования расхода воздуха и производительности в зависимости от фактической нагрузки в помещении.
- Более высокий уровень комфортности: снижение амплитуды скачков температуры и влажности в помещении.
- Малошумный режим работы.
- Сокращение износа и рост надежности.
- Более продолжительный срок службы электродвигателя.

Инверторные фэнкойлы YFCN-ECM с центробежными вентиляторами

Производительность от 0.7 кВт to 7.1 кВт

Технические характеристики

Модель			230	240	430	440	630	640	730	740	930	940
Полная холодопроизводительность [кВт]	' (1)	max 10v	1.61	1.88	2.97	3.19	3.99	4.54	4.98	5.34	6.36	7.14
		med 5v	1.19	1.33	2.19	2.28	2.94	3.2	3.7	3.84	4.86	5.25
		min 1v	0.74	0.78	1.42	1.44	1.97	2.06	2.61	2.62	3.47	3.61
Холодопроизводительность по явному теплу [кВт]	(1)	max	1.3	1.44	2.28	2.48	3.11	3.41	3.84	4.03	5.2	5.63
		med	0.93	0.99	1.65	1.61	2.23	2.35	2.79	2.84	3.83	4.03
		min	0.56	0.57	1.04	1.04	1.47	1.49	1.93	1.91	2.65	2.71
Расход воды в режиме охлаждения [л/час]	(1)	max	299	348	550	592	738	839	921	987	1180	1324
		med	220	245	406	421	544	590	684	710	900	972
		min	137	145	262	266	365	379	4.82	484	642	669
Перепад давления в режиме охлаждения [кПа]	(1)	max	7.9	16.9	32.9	18.5	21.6	37.4	37.1	29.1	25.4	23.7
		med	4.6	9.1	19.3	10.1	12.6	20.2	22	16.3	15.8	13.8
		min	2	3.6	8.9	4.5	6.3	9.2	11.9	8.3	8.7	7.1
Теплопроизводительность— 2-х трубные системы [кВт]	(2)	max	2.22	2.45	3.87	4.04	5.1	5.76	6.26	6.68	9.13	9.79
		med	1.59	1.68	2.78	2.81	3.7	3.96	4.58	4.72	6.68	6.94
		min	0.95	0.96	1.74	1.73	2.4	2.48	3.15	3.15	4.61	4.63
Расход воды в режиме нагрева, 2-х трубная система [л/час] *	(2)	max	383	421	665	694	879	991	1077	1149	1570	168
		med	274	289	478	484	635	681	788	812	1149	119
		min	163	165	300	298	415	426	542	542	793	796
Перепад давления в режиме нагрева 2-х трубная система [кПа]	(2)	max	10	19.4	37.9	19.5	24.1	41.2	40.1	31.2	34.5	29.8
		med	5.6	10	21.2	10.3	13.6	21.3	23.2	16.9	19.9	16.
		min	2.2	3.7	9.3	4.4	6.4	9.3	12	8.3	10.4	8
Теплопроизводительность — 4-х трубные системы [кВт]	(3)	max	1.63	-	2.74		3.68	7.0	4.63	-	5.98	-
		med	1.23	_	2.1	_	2.8	_	3.56	_	4.62	_
		min	0.81	_	1.47	_	2.0	_	2.65	_	4.02	_
Расход воды в режиме нагрева, 4-х трубная система [л/час]	(3)		140	_	238	_	317	_	398	_	514	_
		max med	106	_	181	_	241	-	306	-	397	
			70		126		172	-	228	-	292	
		min						-		-		-
Перепад давления в режиме нагрева 4-х трубная система [кПа]	(3)	max	4.3	-	13.6	-	4.5	-	7.8	-	12.3	-
		med	2.6	-	8.5	-	2.8	-	4.9	-	7.8	-
		min	1.3	-	4.5	-	1.5	-	2.9	-	4.6	-
D [0]		max	330	325	515	505	735	720	890	875	1395	136
Расход воздуха [м3/час]		med	220	210	350	340	495	475	610	585	945	910
		min	120	115	210	200	305	290	400	380	605	575
		max	51	51	51	51	54	54	57	57	64	64
Уровень звуковой мощности [дБ(А)]		med	41	41	42	42	44	44	48	48	55	55
		min	30	30	30	30	33	33	37	37	44	44
		max	42	42	42	42	45	45	48	48	55	55
Уровень звукового давления [дБ(А)]	I (4)	med	32	32	33	33	35	35	39	39	46	46
		min	21	21	21	21	24	24	28	28	35	35
Электропитание [В-ф-Гц]							230 / 1	/ 50 + E				
Потребляемая мощность		max	20.5	20.5	25	25	32	32	41	41	99	99
Размеры	Высота	mm	530	530	530	530	530	530	530	530	530	530
	Ширина	mm	770	770	985	985	1200	1200	1415	1415	1415	141
	Глубина	mm	225	225	225	225	225	225	225	225	255	255

^[1] Температура в помещении 27°C по сухому термометру, 19°C по мокрому термометру – Температура воды 7/12 °C [2] Температура в помещении 20°C – Температура воды на входе: 50°C [3] Температура в помещении 20°C – Температура воды на входе: 70/ 60°C [4] Уровень звукового давления в помещении 100 м2, на расстоянии 1,5 метров и времени реверберации 0,5 секунд. * Расход воды в режиме охлаждения указан в соответствии со стандартами EUROVENT и нормами UNI ENV 1397.